Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
The Shakespeare and Company Project: Lending Library Members dataset includes information about approximately 5,600 members of Sylvia Beach's Shakespeare and Company lending library.
The Shakespeare and Company Project makes three datasets available to download in CSV and JSON formats. The datasets provide information about lending library members; the books that circulated in the lending library; and lending library events, including borrows, purchases, memberships, and renewals. The datasets may be used individually or in combination site URLs are consistent identifiers across all three. The DOIs for each dataset are as follows: Members (https://doi.org/10.34770/nsa4-3t76); Books (https://doi.org/10.34770/079z-h206); Events (https://doi.org/10.34770/rtbp-kv40).
Martin, Nicholas R; Blackman, Edith; Bratton, Benjamin P; Chase, Katelyn J; Bartlett, Thomas M; Gitai, Zemer
Abstract:
Bacterial species have diverse cell shapes that enable motility, colonization, and virulence. The cell wall defines bacterial shape and is primarily built by two cytoskeleton-guided synthesis machines, the elongasome and the divisome. However, the mechanisms producing complex shapes, like the curved-rod shape of Vibrio cholerae, are incompletely defined. Previous studies have reported that species-specific regulation of cytoskeleton-guided machines enables formation of complex bacterial shapes such as cell curvature and cellular appendages. In contrast, we report that CrvA and CrvB are sufficient to induce complex cell shape autonomously of the cytoskeleton in V. cholerae. The autonomy of the CrvAB module also enables it to induce curvature in the Gram-negative species Escherichia coli, Pseudomonas aeruginosa, Caulobacter crescentus, and Agrobacterium tumefaciens. Using inducible gene expression, quantitative microscopy, and biochemistry we show that CrvA and CrvB circumvent the need for patterning via cytoskeletal elements by regulating each other to form an asymmetrically-localized, periplasmic structure that directly binds to the cell wall. The assembly and disassembly of this periplasmic structure enables dynamic changes in cell shape. Bioinformatics indicate that CrvA and CrvB may have diverged from a single ancestral hybrid protein. Using fusion experiments in V. cholerae, we find that a synthetic CrvA/B hybrid protein is sufficient to induce curvature on its own, but that expression of two distinct proteins, CrvA and CrvB, promotes more rapid curvature induction. We conclude that morphological complexity can arise independently of cell shape specification by the core cytoskeleton-guided synthesis machines.
Muniz, Maria Carolina; Gartner III, Thomas E.; Riera, Marc; Knight, Christopher; Yue, Shuwen; Paesani, Francesco; Panagiotopoulos, Athanassios Z.
Abstract:
This dataset contains all data (including input files, simulation trajectories as well as other data files and analysis scripts) related to the publication "Vapor-liquid equilibrium of water with the MB-pol many-body potential" by Muniz et al. in preparation (2021). In this work, we assessed the performance of the MB-pol many-body potential with respect to water's vapor-liquid equilibrium properties. Through the use of direct coexistence molecular dynamics, we calculated properties such as coexistence densities, surface tension, vapor pressures and enthalpy of vaporization. We found that MB-pol is able to predict these properties in good agreement with experimental data. The results attest to the chemical accuracy of MB-pol and its large range of application across water's phase diagram.
These files collect and collate archival budget data for NASA’s various space science programs from 1959-2019 with a particular emphasis on lunar and planetary exploration. Numbers present top-line expenditures as recognized by NASA Headquarters in their annual Budget Estimates presented each year at the beginning of the Congressional appropriations cycle. Data was collected across several publicly available archival sources over the course of 2016-2019 as part of the NSF funded research project, "Pricing the Priceless Spacecraft" (Award #1633314).
Vecchi, Gabriel A.; Landsea, Christopher; Zhang, Wei; Villarini, Gabriele; Knutson, Thomas
Abstract:
These are the data and scripts supporting the manuscript: Vecchi, Landsea, Zhang, Villarini and Knutson (2021): Changes in Atlantic Major Hurricane Frequency Since the Late-19th Century. Nature Communications.
Chang, Claire H. C.; Lazaridi, Christina; Yeshurun, Yaara; Norman, Kenneth A.; Hasson, Uri
Abstract:
This study examined how the brain dynamically updates event representations by integrating new information over multiple minutes while segregating irrelevant input. A professional writer custom-designed a narrative with two independent storylines, interleaving across minute-long segments (ABAB). In the last (C) part, characters from the two storylines meet and their shared history is revealed. Part C is designed to induce the spontaneous recall of past events, upon the recurrence of narrative motifs from A/B, and to shed new light on them. Our fMRI results showed storyline-specific neural patterns, which were reinstated (i.e. became more active) during storyline transitions. This effect increased along the processing timescale hierarchy, peaking in the default mode network. Similarly, the neural reinstatement of motifs was found during part C. Furthermore, participants showing stronger motif reinstatement performed better in integrating A/B and C events, demonstrating the role of memory reactivation in information integration over intervening irrelevant events.
In the attention schema theory, the brain constructs a model of attention, the attention schema, to aid in the endogenous control of attention. Growing behavioral evidence appears to support this proposal. However, a central question remains: does a controller of attention actually benefit by having access to an attention schema? We constructed an artificial, deep Q-learning, neural network agent that was trained to control a simple form of visuospatial attention, tracking a stimulus with its attention spotlight in order to solve a catch task. The agent was tested with and without access to an attention schema. In both conditions, the agent received sufficient information such that it should, theoretically, be able to learn the task. We found that with an attention schema present, the agent learned to control its attention spotlight and learned the catch task to a high degree of performance. Once the agent learned, if the attention schema was disabled, the agent could no longer perform effectively. If the attention schema was removed before learning began, the agent was drastically impaired at learning. The results show how the presence of even a simple attention schema provides a profound benefit to a controller of attention. We interpret these results as supporting the central argument of AST: the brain evolved an attention schema because of its practical benefit in the endogenous control of attention.
The dielectric function for "Astrodust" grain material is provided for different assumed values of the dust grain shape (spheroid axis ratio) and porosity (vacuum fraction), and fraction of the interstellar iron present as metallic inclusions. For each case, the dielectric function is obtained by requiring that the grains reproduce the observed infrared opacity, and match to a physically reasonable dielectric function at 1 micron, and extending to X-ray energies. The derived dielectric functions satisfy the Kramers-Kronig relations. Dielectric functions are provided from 1 Angstrom to 5 cm (12.4 keV to 2.59e-5 eV).
For each dielectric function, we also calculate absorption and scattering corss sections for spheroidal grains, for three orientations of the grain relative to incident linearly-polarized light, for wavelengths from the Lyman limit (0.0912 micron) to the microwave (4 cm), and grain "effective radii" a_eff from 3.162A to 5.012 micron.