Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Chen, Xu; Gallagher, Kevin P.; Mauzerall, Denise L.
Abstract:
Global power generation must rapidly decarbonize by mid-century to meet the goal of stabilizing global warming below 2 degree Celsius. To meet this objective, multilateral development banks (MDBs) have gradually reduced fossil fuel and increased renewable energy financing. Meanwhile, globally active national development finance institutions (DFIs) from Japan and South Korea have continued to finance overseas coal plants. Less is known about the increasingly active Chinese DFIs. Here we construct a new dataset of China’s policy banks’ overseas power generation financing and compare their technology choices and impact on generation capacity with MDBs and Japanese and South Korean DFIs. We find Chinese DFI power financing since 2000 has dramatically increased, surpassing other East Asian national DFIs and the major MDBs’ collective public sector power financing in 2013. As most Chinese DFI financing is currently in coal, decarbonization of their power investments will be critical in reducing future carbon emissions from recipient countries.
Data set used to train a Deep Potential (DP) model for crystalline and disordered TiO2 phases. Training data contain atomic forces, potential energy, atomic coordinates and cell tensor. Energy and forces were evaluated with the density functional SCAN, as implemented in Quantum-ESPRESSO. Atomic configurations of crystalline systems were generated by random perturbation of atomic positions (0-0.3 A) and cell tensor (1-10%). Amorphous TiO2 was explored by DP molecular dynamics (DPMD) at temperatures in the range 300−2500 K and pressure in the range 0−81 GPa.
Pacheco, Diego A; Thiberge, Stephan; Pnevmatikakis, Eftychios; Murthy, Mala
Abstract:
Sensory pathways are typically studied starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analysis of activity towards the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration, to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals, and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of spontaneous movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.
Z. R. Wang; A. H. Glasser; D. Brennan; Y. Q. Liu; J-K. Park
Abstract:
The method of solving linear resistive plasma response, based on the asymptotic matching approach, is developed for full toroidal tokamaks by upgrading the Resistive DCON code [A.H. Glasser, Z.R. Wang and J.-K. Park, Physics of Plasmas, \textbf{23}, 112506 (2016)]. The derived matching matrix, asymptotically matching the outer and inner regions, indicates that the applied three dimension (3-D) magnetic perturbations contribute additional small solutions at each resonant surface due to the toroidal coupling of poloidal modes. In contrast, the resonant harmonic only affects the corresponding resonant surface in the cylindrical plasma. Since the solution of ideal outer region is critical to the asymptotic matching and is challenging to be solved in the toroidal geometry due to the singular power series solution at the resonant surfaces, systematic verification of the outer region $\Delta^\prime$ matrix is made by reproducing the well known analytical $\Delta^{\prime}$ result in [H.P. Furth, P.H. Rutherford and H. Selberg, The Physics of Fluids, \textbf{16}, 1054-1063 (1073)] as well as by making a quantitative benchmark with the PEST3 code [A. Pletzer and R.L. Dewar, J. Plasma Physics, \textbf{45}, 427-451 (1991)]. Finally, the reconstructed numerical solution of resistive plasma response from the toroidal matching matrix is presented. Comparing with the ideal plasma response, the global structure of the response can be affected by the small finite island at the resonant surfaces.
Bergstedt, K.; Ji, H.; Jara-Almonte, J.; Yoo, J.; Ergun, R. E.; Chen, L.-J.
Abstract:
We present the first statistical study of magnetic structures and associated energy dissipation observed during a single period of turbulent magnetic reconnection, by using the in situ measurements of the Magnetospheric Multiscale mission in the Earth's magnetotail on 26 July 2017. The structures are selected by identifying a bipolar signature in the magnetic field and categorized as plasmoids or current sheets via an automated algorithm which examines current density and plasma flow. The size of the plasmoids forms a decaying exponential distribution ranging from subelectron up to ion scales. The presence of substantial number of current sheets is consistent with a physical picture of dynamic production and merging of plasmoids during turbulent reconnection. The magnetic structures are locations of significant energy dissipation via electric field parallel to the local magnetic field, while dissipation via perpendicular electric field dominates outside of the structures. Significant energy also returns from particles to fields.
Particle distribution functions evolving under the Lorentz operator can be simulated with the Langevin equation for pitch angle scattering. This approach is frequently used in particle based Monte-Carlo simulations of plasma collisions, among others. However, most numerical treatments do not guarantee energy conservation, which may lead to unphysical artifacts such as numerical heating and spectra distortions. We present a novel structure-preserving numerical algorithm for the Langevin equation for pitch angle scattering. Similar to the well-known Boris algorithm, the proposed numerical scheme takes advantage of the structure-preserving properties of the Cayley transform when calculating the velocity-space rotations. The resulting algorithm is explicitly solvable, while preserving the norm of velocities down to machine precision. We demonstrate that the method has the same order of numerical convergence as the traditional stochastic Euler-Maruyama method.
Data set used to train a Deep Potential (DP) model for
subcritical and supercritical water. Training data contain atomic forces,
potential energy, atomic coordinates and cell tensor. Energy and forces
were evaluated with the density functional SCAN. Atomic configurations
were extracted from DP molecular dynamics at P = 250 bar and
T = 553, 623, 663, 733 and 823 K. Input files used to train the DP model
are also provided.
Gartner, Thomas III; Zhang, Linfeng; Piaggi, Pablo; Car, Roberto; Panagiotopoulos, Athanassios; Debenedetti, Pablo
Abstract:
This dataset contains all data related to the publication "Signatures of a liquid-liquid transition in an ab initio deep neural network model for water", by Gartner et al., 2020. In this work, we used neural networks to generate a computational model for water using high-accuracy quantum chemistry calculations. Then, we used advanced molecular simulations to demonstrate evidence that suggests this model exhibits a liquid-liquid transition, a phenomenon that can explain many of water's anomalous properties. This dataset contains links to all software used, all data generated as part of this work, as well as scripts to generate and analyze all data and generate the plots reported in the publication.
Hammond, K. C.; Zhu, C.; Brown, T.; Corrigan, K.; Gates, D. A.; Sibilia, M.
Abstract:
The development of stellarators that use permanent magnet arrays to shape their confining magnetic fields has been a topic of recent interest, but the requirements for how such magnets must be shaped, manufactured, and assembled remain to be determined. To address these open questions, we have performed a study of geometric concepts for magnet arrays with the aid of the newly developed MAGPIE code. A proposed experiment similar to the National Compact Stellarator Experiment (NCSX) is used as a test case. Two classes of magnet geometry are explored: curved bricks that conform to a regular grid in cylindrical coordinates, and hexahedra that conform to the toroidal plasma geometry. In addition, we test constraints on the magnet polarization. While magnet configurations constrained to be polarized normally to a toroidal surface around the plasma are unable to meet the required magnetic field parameters when subject to physical limitations on the strength of present-day magnets, configurations with unconstrained polarizations are shown to satisfy the physics requirements for a targeted plasma.