Berryman, Eleanor J.; Winey, J. M.; Gupta, Yogendra M.; Duffy, Thomas S.
Abstract:
Stishovite (rutile-type SiO2) is the archetype of dense silicates and may occur in post-garnet eclogitic rocks at lower-mantle conditions. Sound velocities in stishovite are fundamental to understanding its mechanical and thermodynamic behavior at high pressure and temperature. Here, we use plate-impact experiments combined with velocity interferometry to determine the stress, density, and longitudinal sound speed in stishovite formed during shock compression of fused silica at 44 GPa and above. The measured sound speeds range from 12.3(8) km/s at 43.8(8) GPa to 9.8(4) km/s at 72.7(11) GPa. The decrease observed at 64 GPa reacts a decrease in the shear modulus of stishovite, likely due to the onset of melting. By 72 GPa, the measured sound speed agrees with the theoretical bulk sound speed indicating loss of all shear stiffness due to complete melting. Our sound velocity results provide direct evidence for shock-induced melting, in agreement with previous pyrometry data.
In 2017, seven members of the Archive-It Mid-Atlantic Users Group (AITMA) conducted a study of 14 subjects representative of their stakeholder populations to assess the usability of Archive-It, a web archiving subscription service of the Internet Archive. While Archive-It is the most widely-used tool for web archiving, little is known about how users interact with the service. This study intended to teach us what users expect from web archives, which exist as another form of archival material. End-user subjects executed four search tasks using the public Archive-It interface and the Wayback Machine to access archived information on websites from the facilitators’ own harvested collections and provide feedback about their experiences. The tasks were designed to have straightforward pass or fail outcomes, and the facilitators took notes on the subjects’ behavior and commentary during the sessions. Overall, participants reported mildly positive impressions of Archive-It public user interface based on their session. The study identified several key areas of improvement for the Archive-It service pertaining to metadata options, terminology display, indexing of dates, and the site’s search box.
The efficiency of two lithium (Li) injection methods used on the National Spherical Torus Experiment (NSTX) are compared in terms of the amount of Li used to produce equivalent plasma performance improvements, namely Li evaporation over the divertor plates, prior to the initiation of the discharge, and real-time Li injection directly into the plasma scrape-off layer during the discharge. The measurements show that the real-time method can affect the energy confinement and edge stability of NSTX plasmas in a more efficient way than the Li evaporation method as it requires only a fraction of the amount of Li used by the evaporation method to produce similar improvements.
Compact tokamak fusion reactors utilizing advanced high-temperature superconducting magnets for the toroidal field coils have received considerable recent attention due to the promise of more compact devices and more economical fusion energy development. Facilities with combined Fusion Nuclear Science (FNS) and Pilot Plant missions to provide both the nuclear environment needed to develop fusion materials and components while also potentially achieving sufficient fusion performance to generate modest net electrical power are considered. The performance of the tokamak fusion system is assessed using a range of core physics and toroidal field magnet performance constraints to better understand which parameters most strongly influence the achievable fusion performance.
Antony, James W.; Cheng, Larry Y.; Brooks, Paula P.; Paller, Ken A.; Norman, Kenneth A.
Abstract:
Competition between memories can cause weakening of those memories. Here we investigated memory competition during sleep in human participants by presenting auditory cues that had been linked to two distinct picture-location pairs during wake. We manipulated competition during learning by requiring participants to rehearse picture-location pairs associated with the same sound either competitively (choosing to rehearse one over the other, leading to greater competition) or separately; we hypothesized that greater competition during learning would lead to greater competition when memories were cued during sleep. With separate-pair learning, we found that cueing benefited spatial retention. With competitive-pair learning, no benefit of cueing was observed on retention, but cueing impaired retention of well-learned pairs (where we expected strong competition). During sleep, post-cue beta power (16–30 Hz) indexed competition and predicted forgetting, whereas sigma power (11–16 Hz) predicted subsequent retention. Taken together, these findings show that competition between memories during learning can modulate how they are consolidated during sleep.
Raman, R.; Lay, W.-S.; Jarboe, T.R.; Menard, J.E.; Ono, M.
Abstract:
A novel, rapid time-response, disruption mitigation system referred to as the Electromagnetic Particle Injector (EPI) is described. This method can accurately deliver the radiative payload to the plasma center on a <10 ms time scale, much faster, and deeper, than what can be achieved using conventional methods. The EPI system accelerates a sabot electromagnetically. The sabot is a metallic capsule that can be accelerated to desired velocities by an electromagnetic impeller. At the end of its acceleration, within 2 ms, the sabot will release a radiative payload, which is composed of low-z granules, or a shell pellet containing smaller pellets. The primary advantage of the EPI concept over gas propelled systems is its potential to meet short warning time scales, while accurately delivering the required particle size and materials at the velocities needed for achieving the required penetration depth in high power ITER-scale discharges for thermal and runaway current disruption mitigation. The present experimental tests from a prototype system have demonstrated the acceleration of a 3.2 g sabot to over 150 m/s within 1.5 ms, consistent with the calculations, giving some degree of confidence that larger ITER-scale injector can be developed.
The injection of impurity granules into fusion research discharges can serve
as a catalyst for ELM events. For sufficiently low ELM frequencies, and granule
sizes above a threshold, this can result in full control of the ELM cycle,
referred to as ELM pacing. For this research, we extend the investigation
to conditions where the natural ELM frequency is too high for ELM pacing to
be realized. Utilizing multiple sizes of lithium granules and classifying their
effects by granule size, we demonstrate that ELM mitigation through frequency
multiplication can be used at ELM triggering rates that nominally make ELM pacing
unrealizable. We find that above a size threshold, injected granules promptly
trigger ELMs and commensurately enhance the ELM frequency . Below this threshold
size, injection of an individual granule does not always lead to the prompt
triggering of an ELM; however, collective ablation in the edge pedestal region
does enhance the ELM frequency. Specifically, Li granules too small to individually
trigger ELMs were injected into EAST H-mode discharges at frequencies up to 2.3 kHz;
collectively the granules were observed to enhance the natural ELM frequency up to
620 Hz, resulting in a ~2.4x multiplication of the natural ELM frequency and a 50%
decrease of the ELM size.
Skinner, C.H.; Chrobak, C.P.; Kaita, R.; Koel, B.E.
Abstract:
Tokamak plasma facing components have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration, erosion lifetime, dust and tritium accumulation, and plasma contamination. However high spatial resolution measurements of deposition on the scale of the surface roughness have been lacking to date. We will present elemental images of graphite samples from NSTX-U and DIII-D DiMES experiments performed with a Scanning Auger Microprobe at sub-micron resolution that show strong microscopic variations in deposition and correlate this with 3D topographical maps of surface irregularities. The NSTX-U samples were boronized and exposed to deuterium plasmas and the DiMES samples had localized Al and W films and were exposed to dedicated helium plasmas. Topographical maps of the samples were performed with a 3D confocal optical microscope and compared to the elemental deposition pattern. The results revealed localized deposition concentrated in areas shadowed from the ion flux, incident in a direction calculated (for the DiMES case) by taking account of the magnetic pre-sheath.