Number of results to display per page
Search Results
412. A dynamic magnetic tension force as the cause of failed solar eruptions
- Abstract:
- Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.
- Type:
- Dataset
- Issue Date:
- 11 December 2015
413. Evolution patterns and parameter regimes in edge localized modes on the National Spherical Torus Experiment
- Author(s):
- Smith, D.R.; R.J. Fonck; G.R. McKee; A. Diallo; S.M. Kaye; B.P. LeBlanc; S.A. Sabbagh
- Abstract:
- We implement unsupervised machine learning techniques to identify characteristic evolution patterns and associated parameter regimes in edge localized mode (ELM) events observed on the National Spherical Torus Experiment. Multi-channel, localized measurements spanning the pedestal region capture the complex evolution patterns of ELM events on Alfven timescales. Some ELM events are active for less than 100~microsec, but others persist for up to 1~ms. Also, some ELM events exhibit a single dominant perturbation, but others are oscillatory. Clustering calculations with time-series similarity metrics indicate the ELM database contains at least two and possibly three groups of ELMs with similar evolution patterns. The identified ELM groups trigger similar stored energy loss, but the groups occupy distinct parameter regimes for ELM-relevant quantities like plasma current, triangularity, and pedestal height. Notably, the pedestal electron pressure gradient is not an effective parameter for distinguishing the ELM groups, but the ELM groups segregate in terms of electron density gradient and electron temperature gradient. The ELM evolution patterns and corresponding parameter regimes can shape the formulation or validation of nonlinear ELM models. Finally, the techniques and results demonstrate an application of unsupervised machine learning at a data-rich fusion facility.
- Type:
- Dataset
- Issue Date:
- September 2015
414. Accessing Real-Life Episodic Information from Minutes versus Hours Earlier Modulates Hippocampal and High-Order Cortical Dynamics
- Author(s):
- Chen, Janice; Honey, Christopher; Simony, Erez; Arcaro, Michael; Norman, Kenneth; Hasson, Uri
- Abstract:
- It is well known that formation of new episodic memories depends on hippocampus, but in real-life settings (e.g., conversation), hippocampal amnesics can utilize information from several minutes earlier. What neural systems outside hippocampus might support this minutes-long retention? In this study, subjects viewed an audiovisual movie continuously for 25 min; another group viewed the movie in 2 parts separated by a 1-day delay. Understanding Part 2 depended on retrieving information from Part 1, and thus hippocampus was required in the day-delay condition. But is hippocampus equally recruited to access the same information from minutes earlier? We show that accessing memories from a few minutes prior elicited less interaction between hippocampus and default mode network (DMN) cortical regions than accessing day-old memories of identical events, suggesting that recent information was available with less reliance on hippocampal retrieval. Moreover, the 2 groups evinced reliable but distinct DMN activity timecourses, reflecting differences in information carried in these regions when Part 1 was recent versus distant. The timecourses converged after 4 min, suggesting a time frame over which the continuous-viewing group may have relied less on hippocampal retrieval. We propose that cortical default mode regions can intrinsically retain real-life episodic information for several minutes.
- Type:
- Dataset
- Issue Date:
- 3 August 2015
415. Midplane neutral density profiles in the National Spherical Torus Experiment
- Author(s):
- Stotler, D.; F. Scotti; R.E. Bell; A. Diallo; B.P. LeBlanc; M. Podesta; A.L. Roquemore; P.W. Ross
- Abstract:
- Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-b light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-a emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 10^17 m3 and atomic densities ranging from 1 to 7 10^16 m3; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. The uncertainties in the neutral densities associated with other model inputs and assumptions are 50%.
- Type:
- Dataset
- Issue Date:
- August 2015
416. Attentional Modulation of Brain Responses to Primary Appetitive and Aversive Stimuli
- Author(s):
- Cara L. Buck; Jonathan D. Cohen; Field, Brent; Daniel Kahneman; Samuel M. McClure; Leigh E. Nystrom
- Abstract:
- Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value.
- Type:
- Dataset, Software, and text
- Issue Date:
- 11 February 2015
417. Dataset for JGR Article (DOI: 10.1002/2014JD022278)
- Abstract:
- This dataset contains all the data, model and MATLAB codes used to generate the figures and data reported in the article (DOI: 10.1002/2014JD022278). The data was generated during September 2013 and February 2014 using the Ocean-Land-Atmosphere Model also provided with this package. The data was generated using the computational resources supported by the PICSciE OIT High Performance Computing Center and Visualization Laboratory at Princeton University. The dataset contains a pdf Readme file which explains in detail how the data can be used. Users are recommended to go through this file before using the data.
- Type:
- Dataset, Image, Software, and text
- Issue Date:
- 19 November 2014
418. Complete Dataset for Williams Site Pore Water Chemistry, March 2011 - April 2012
- Abstract:
- Complete dataset of pore water chemical parameters measured at the Marsh Resource Meadowlands Mitigation Bank, a tidal marsh within the New Jersey Meadowlands, from March 2011 to April 2012. Analytes measured include dissolved methane, sulfate, dissolved organic carbon, temperature, salinity, and pH. Measurements were conducted using porewater dialysis samplers, and water was sampled from the surface to a depth of 60 cm.
- Type:
- Dataset
- Issue Date:
- 7 March 2014
419. An extended MHD study of the 16 October 2015 MMS diffusion region crossing
- Abstract:
- The Magnetospheric Multiscale (MMS) mission has given us unprecedented access to high cadence particle and field data of magnetic reconnection at Earth's magnetopause. MMS first passed very near an X-line on 16 October 2015, the Burch event, and has since observed multiple X-line crossings. Subsequent 3D particle-in-cell (PIC) modeling efforts of and comparison with the Burch event have revealed a host of novel physical insights concerning magnetic reconnection, turbulence induced particle mixing, and secondary instabilities. In this study, we employ the Gkeyll simulation framework to study the Burch event with different classes of extended, multi-fluid magnetohydrodynamics (MHD), including models that incorporate important kinetic effects, such as the electron pressure tensor, with physics-based closure relations designed to capture linear Landau damping. Such fluid modeling approaches are able to capture different levels of kinetic physics in global simulations and are generally less costly than fully kinetic PIC. We focus on the additional physics one can capture with increasing levels of fluid closure refinement via comparison with MMS data and existing PIC simulations. In particular, we find that the ten-moment model well captures the agyrotropic structure of the pressure tensor in the vicinity of the X-line and the magnitude of anisotropic electron heating observed in MMS and PIC simulations. However, the ten-moment model has difficulty resolving the lower hybrid drift instability, which has been observed to plays a fundamental role in heating and mixing electrons in the current layer.
- Type:
- Dataset
420. Bubble pinch-off in turbulence
- Abstract:
- Experimental data, simulation code, and Python scripts to reproduce the data presented in "Bubble pinch-off in turbulence"
- Type:
- Dataset and Software