« Previous |
1 - 10 of 12
|
Next »
Number of results to display per page
Search Results
2. A reduced-turbulence regime in the Large Helical Device upon injection of low-Z materials powders
- Author(s):
- Nespoli, Federico; Tanaka, Kenji; Masuzaki, Suguru; Ashikawa, Naoko; Shoji, Mamoru; Gilson, Erik; Lunsford, Robert; Oishi, Tetsutarou; Ida, Katsumi; Yoshinuma, Mikirou; Takemura, Yuki; Kinoshita, Toshiki; Motojima, Gen; Osakabe, Masaki; Kenmochi, Naoki; Kawamura, Gakushi; Suzuki, Chihiro; Nagy, Alex; Bortolon, Alessandro; Pablant, Novimir; Mollen, Albert; Tamura, Naoki; Gates, David; Morisaki, Tomohiro
- Abstract:
- Recently an improved confinement regime, characterized by reduced turbulent fluctuations has been observed in the Large Helical Device upon the injection of boron powder into the plasma (Nespoli et al 2022 Nat. Phys.18 350–56). In this article, we report in more detail the experimental observations of increased plasma temperature and the decrease of turbulent fluctuations across the plasma cross section, on an extended database. In particular, we compare powders of different materials (B, C, BN), finding similar temperature improvement and turbulence response for the three cases. Modeling of the powder penetration into the plasma and of neoclassical electric field and fluxes support the interpretation of the experimental results. Additionally, we report evidence of the temperature improvement increasing with powder injection rates and decreasing for both increasing density and heating power. Though, plasma turbulence response varies depending on the initial conditions of the plasma, making it difficult to draw an inclusive description of the phenomenon.
- Type:
- Dataset
- Issue Date:
- 19 May 2023
3. A novel scheme for error field correction in permanent magnet stellarators
- Author(s):
- Rutkowski, Adam; Hammond, Kenneth; Zhu, Caoxiang; Gates, David; Chambliss, Amelia
- Abstract:
- Stellarators offer a promising path towards fusion reactors, but their design and construction are complicated by stringent tolerance requirements on highly complex 3D coils. A potential way to simplify the engineering requirements for stellarators is to use simple planar toroidal field coils along with permanent magnet arrays to generate shaping fields. In order to ensure sufficient field accuracy while minimizing engineering complexity and system cost, new techniques are required to correct the field produced by the permanent magnet arrays to within requirements set by plasma physics. This work describes a novel correction method developed for this purpose. This analysis is applied to the design of a quasi-axisymmetric stellarator that employs a combination of permanent magnets and planar toroidal field coils to generate its magnetic field. Analysis techniques and initial results using the method for error correction on a proposed permanent magnet stellarator are shown, and it is demonstrated that the method successfully meets the design requirements of the project.
- Type:
- Dataset
- Issue Date:
- 7 December 2022
4. Observation of a reduced-turbulence regime with boron powder injection in a stellarator
- Author(s):
- Nespoli, Federico; Masuzaki, Suguru; Tanaka, Kenji; Ashikawa, Naoko; Shoji, Mamoru; Gilson, Erik; Lunsford, Robert; Oishi, Tetsutarou; Ida, Katsumi; Yoshinuma, Mikirou; Takemura, Yuki; Kinoshita, Toshiki; Motojima, Gen; Kenmochi, Naoki; Kawamura, Gakushi; Suzuki, Chihiro; Nagy, Alex; Bortolon, Alessandro; Pablant, Novimir; Mollen, Albert; Tamura, Naoki; Gates, David; Morisaki, Tomohiro
- Abstract:
- In state-of-the-art stellarators, turbulence is a major cause of the degradation of plasma confinement. To maximize confinement, which eventually determines the amount of nuclear fusion reactions, turbulent transport needs to be reduced. Here we report the observation of a confinement regime in a stellarator plasma that is characterized by increased confinement and reduced turbulent fluctuations. The transition to this regime is driven by the injection of submillimetric boron powder grains into the plasma. With the line-averaged electron density being kept constant, we observe a substantial increase of stored energy and electron and ion temperatures. At the same time, the amplitude of the plasma turbulent fluctuations is halved. While lower frequency fluctuations are damped, higher frequency modes in the range between 100 and 200 kHz are excited. We have observed this regime for different heating schemes, namely with both electron and ion cyclotron resonant radio frequencies and neutral beams, for both directions of the magnetic field and both hydrogen and deuterium plasmas.
- Type:
- Dataset
- Issue Date:
- 10 January 2022
5. Design of an arrangement of cubic magnets for a quasi-axisymmetric stellarator experiment
- Author(s):
- Hammond, Kenneth; Zhu, Caoxiang; Corrigan, Keith; Gates, David; Lown, Robert; Mercurio, Robert; Qian, Tony; Zarnstorff, Michael
- Abstract:
- The usage of permanent magnets to shape the confining field of a stellarator has the potential to reduce or eliminate the need for non-planar coils. As a proof-of-concept for this idea, we have developed a procedure for designing an array of cubic permanent magnets that works in tandem with a set of toroidal-field coils to confine a stellarator plasma. All of the magnets in the design are constrained to have identical geometry and one of three polarization types in order to simplify fabrication while still producing sufficient field accuracy. We present some of the key steps leading to the design, including the geometric arrangement of the magnets around the device, the procedure for optimizing the polarizations according to three allowable magnet types, and the choice of magnet types to be used. We apply these methods to design an array of rare-Earth permanent magnets that can be paired with a set of planar toroidal-field coils to confine a quasi-axisymmetric plasma with a toroidal magnetic field strength of about 0.5 T on axis.
- Type:
- Dataset
- Issue Date:
- 2022
6. Energetic particle optimization of quasi-axisymmetric stellarator equilibria
- Author(s):
- LeViness, Alexandra; Schmitt, John; Lazerson, Samuel; Bader, Aaron; Faber, Benjamin; Hammond, Kenneth; Gates, David
- Abstract:
- An important goal of stellarator optimization is to achieve good confinement of energetic particles such as, in the case of a reactor, alphas created by Deuterium-Tritium (D-T) fusion. In this work, a fixed-boundary stellarator equilibrium was re-optimized for energetic particle confinement via a two-step process: first, by minimizing deviations from quasi-axisymmetry (QA) on a single flux surface near the mid-radius, and secondly by maintaining this improved quasi-axisymmetry while minimizing the analytical quantity ΓC , which represents the angle between magnetic flux surfaces and contours of J||, the second adiabatic invariant. This was performed multiple times, resulting in a group of equilibria with significantly reduced energetic particle losses, as evaluated by Monte Carlo simulations of alpha particles in scaled-up versions of the equilibria. This is the first time that energetic particle losses in a QA stellarator have successfully been reduced by optimizing ΓC . The relationship between energetic particle losses and metrics such as QA error (Eqa) and ΓC in this set of equilibria were examined via statistical methods and a nearly linear relationship between volume-averaged ΓC and prompt particle losses was found.
- Type:
- Dataset
- Issue Date:
- 2022
7. Fusion Pilot Plant performance and the role of a Sustained High Power Density tokamak
- Author(s):
- Menard, Jonathan; Grierson, Brian; Brown, Tom; Rana, Chirag; Zhai, Yuhu; Poli, Francesca; Maingi, Rajesh; Guttenfelder, Walter; Snyder, Philip
- Abstract:
- Recent U.S. fusion development strategy reports all recommend that the U.S. should pursue innovative science and technology to enable construction of a Fusion Pilot Plant (FPP) that produces net electricity from fusion at low capital cost. Compact tokamaks have been proposed as a means of potentially reducing the capital cost of a fusion pilot plant. However, compact steady-state tokamak FPPs face the challenge of integrating a high fraction of self-driven current with high core confinement, plasma pressure, and high divertor parallel heat flux. This integration is sufficiently challenging that a dedicated sustained-high-power-density (SHPD) tokamak facility is proposed by the U.S. community as the optimal way to close this integration gap. Performance projections for the steady-state tokamak FPP regime are presented and a preliminary SHPD device with substantial flexibility in lower aspect ratio (A=2-2.5), shaping, and divertor configuration to narrow gaps to a FPP is described.
- Type:
- Dataset
- Issue Date:
- January 2022
8. Stellarator coil design using cubic splines for improved access on the outboard side
- Author(s):
- Nicola, Lonigro; Zhu, Caoxiang
- Abstract:
- This is the data archive for the paper Lonigro & Zhu 2021 Nucl. Fusion https://doi.org/10.1088/1741-4326/ac2ff3. You can reproduce all the figures in the paper using the data and plotting scripts archived in this folder.
- Type:
- collection
- Issue Date:
- 20 October 2021
9. Hyperdiffusion of dust particles in a turbulent tokamak plasma
- Author(s):
- Nespoli, Federico; Kaganovich, Igor; Autricque, Adrien; Marandet, Yannick; Tamain, Patrick
- Abstract:
- The effect of plasma turbulence on the trajectories of dust particles is investigated for the first time. The dynamics of dust particles is computed using the ad-hoc developed Dust Injection Simulator code, using a 3D turbulent plasma background computed with the TOKAM3X code. As a result, the evolution of the particle trajectories is governed by the ion drag force, and the shape of the trajectory is set by the Stokes number $St\propto a_d/n_0$, with $a_d$ the dust radius and $n_0$ the density at the separatrix. The plasma turbulence is observed to scatter the dust particles, exhibiting a hyperdiffusive regime in all cases. The amplitude of the turbulent spread of the trajectories $\Delta r^2$ is shown to depend on the ratio $Ku/St$, with $Ku\propto u_{rms}$ the Kubo number and $u_{rms}$ the fluctuation level of the plasma flow. These results are compared with a simple analytical model, predicting $\Delta r^2\propto (Ku/St)^2t^3$, or $\Delta r^2\propto (u_{rms}n_0/a_d)^2t^3$. As the dust is heated by the plasma fluxes, thermionic emission sets the dust charge, originally negative, to slightly positive values. This results in a substantial reduction of the ion drag force through the suppression of its Coulomb scattering component. The dust grain inertia is then no longer negligible, and drives the transition from a hyperdiffusive regime towards a ballistic one.
- Type:
- Article
- Issue Date:
- July 2021
10. Initial operation and data processing on a system for real-time evaluation of Thomson scattering signals on the Large Helical Device
- Author(s):
- Hammond, K. C.; Laggner, F. M.; Diallo, A.; Doskoczynski, S.; Freeman, C.; Funaba, H.; Gates, D.A.; Rozenblat, R.; Tchilinguirian, G.; Xing, Z.; Yamada, I.; Yasuhara, R.; Zimmer, G.; Kolemen, E.
- Abstract:
- A scalable system for real-time analysis of electron temperature and density based on signals from the Thomson scattering diagnostic, initially developed for and installed on the NSTX-U experiment, was recently adapted for the Large Helical Device (LHD) and operated for the first time during plasma discharges. During its initial operation run, it routinely recorded and processed signals for four spatial points at the laser repetition rate of 30 Hz, well within the system's rated capability for 60 Hz. We present examples of data collected from this initial run and describe subsequent adaptations to the analysis code to improve the fidelity of the temperature calculations.
- Type:
- Dataset
- Issue Date:
- 2021
- « Previous
- Next »
- 1 Current Page, Page 1
- 2