Geyman, Emily C.; Wu, Ziman; Nadeau, Matthew D.; Edmonsond, Stacey; Turner, Andrew; Purkis, Sam J.; Howes, Bolton; Dyer, Blake; Ahm, Anne-Sofie C.; Yao, Nan; Deutsch, Curtis A.; Higgins, John A.; Stolper, Daniel A.; Maloof, Adam C.
Abstract:
Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. In this contribution, we present new geochemical data that bear on this problem, including stable isotope and minor and trace element data from carbonate sources in the modern Bahamas such as ooids, corals, foraminifera, and green algae.
Explosive volcanic eruptions have large climate impacts, and can serve as observable tests of the climatic response to radiative forcing. Using a high resolution climate model, we contrast the climate responses to Pinatubo, with symmetric forcing, and those to Santa Maria and Agung, which had meridionally asymmetric forcing. Although Pinatubo had larger global-mean forcing, asymmetric forcing strongly shifts the latitude of tropical rainfall features, leading to larger local precipitation/TC changes. For example, North Atlantic TC activity over is enhanced/reduced by SH-forcing (Agung)/NH-forcing (Santa Maria), but changes little in response to the Pinatubo forcing. Moreover, the transient climate sensitivity estimated from the response to Santa Maria is 20% larger than that from Pinatubo or Agung. This spread in climatic impacts of volcanoes needs to be considered when evaluating the role of volcanoes in global and regional climate, and serves to contextualize the well-observed response to Pinatubo.