1 - 5 of 5
Number of results to display per page
Search Results
2. Type-I ELM mitigation by continuous lithium granule gravitational injection into the upper tungsten divertor in EAST
- Author(s):
- Sun, Zhen; Yuzhong, Qian; Maingi, Rajesh; Wang, Yifeng; Wang, Yumin; Nagy, Alex; Tritz, Kevin; Lunsford, Robert; Gilson, Erik; Zuo, Guizhong; Xu, Wei; Huang, Ming; Meng, Xiancai; Mansfield, Dennis K.; Zang, Qing; Zhu, Xiang; Lin, Xin; Liu, Haiqing; Duan, Yanmin; Zhang, Ling; Lyu, Bo; Liu, Yong; Wang, Liang; Bortolon, Ale; Xu, Guosheng; Gong, Xianzu; Hu, Jiansheng
- Abstract:
- Large edge-localized modes (ELMs) were mitigated by gravitational injection of lithium granules into the upper X-point region of the EAST device with tungsten plasma-facing components. The maximum ELM size was reduced by ~ 70% in high βN H-mode plasmas. Large ELM stabilization was sustained for up to about 40 energy confinement times, with constant core radiated power and no evidence of high-Z or low-Z impurity accumulation. The lithium granules injection reduced the edge plasma pedestal density and temperature and their gradients, due to increased edge radiation and reduced recycling from the plasma-facing components. Ideal stability calculations using the ELITE code indicate that the stabilization of large ELMs correlates with improved stability of intermediate-n peeling-ballooning modes, due to reduced edge current resulting from the profile changes. The pedestal pressure reduction was partially offset by a core density increase, which resulted in a modest ~ 7% drop in core stored energy and normalized energy confinement time. We surmise that the remnant small ELMs are triggered by the penetration of multiple Li granules just past the separatrix, similar to small ELMs triggered by deuterium pellet [S. Futatani et al., Nucl. Fusion 54 (2014) 073008]. This study extends previous ELM elimination with Li powder injection [R. Maingi et al., Nucl. Fusion 58 (2018) 024003] in EAST because 1) use of small, dust-like powder and the related potential health hazards were eliminated, and 2) use of macroscopic granules should be more applicable to future devices, due to deeper penetration than dust particles, e.g. inside the separatrix with velocities ~ 10 m/s in EAST.
- Type:
- Article
- Issue Date:
- April 2021
3. ELM frequency enhancement and discharge modification through lithium granule injection into EAST H-modes
- Author(s):
- Lunsford; Hsu, J.S.; Sun, Z.; Maingi, R.; Mansfield, D.K.; Xu, W.; Zuo, G.Z.; Huang, M.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Meng, X.C.; Gong, X.Z.; Wan, B.N.; Li, J.G.; EAST Team
- Abstract:
- The injection of impurity granules into fusion research discharges can serve as a catalyst for ELM events. For sufficiently low ELM frequencies, and granule sizes above a threshold, this can result in full control of the ELM cycle, referred to as ELM pacing. For this research, we extend the investigation to conditions where the natural ELM frequency is too high for ELM pacing to be realized. Utilizing multiple sizes of lithium granules and classifying their effects by granule size, we demonstrate that ELM mitigation through frequency multiplication can be used at ELM triggering rates that nominally make ELM pacing unrealizable. We find that above a size threshold, injected granules promptly trigger ELMs and commensurately enhance the ELM frequency . Below this threshold size, injection of an individual granule does not always lead to the prompt triggering of an ELM; however, collective ablation in the edge pedestal region does enhance the ELM frequency. Specifically, Li granules too small to individually trigger ELMs were injected into EAST H-mode discharges at frequencies up to 2.3 kHz; collectively the granules were observed to enhance the natural ELM frequency up to 620 Hz, resulting in a ~2.4x multiplication of the natural ELM frequency and a 50% decrease of the ELM size.
- Type:
- Dataset
- Issue Date:
- October 2018
4. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
- Author(s):
- Maingi, R.; Hu, J.S.; Sun, Z.; Tritz, K.; Zuo, G.Z.; Xu, W.; Huang, M.; Meng, X.C.; Canik, J.M.; Diallo, A.; Lunsford, R.; Mansfield, D.K.; Osborne, T.H.; Gong, X.Z.; Wang, Y.F.; Li, Y.Y.
- Abstract:
- We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 sec in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D-alpha baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST [J.S. Hu et al., Phys. Rev. Lett. 114 (2015) 055001]. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs [P.T. Lang et al., Nucl. Fusion 57 (2017) 016030], highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.
- Type:
- Dataset
- Issue Date:
- December 2017
5. Injected mass deposition thresholds for lithium granule instigated triggering of edge localized modes on EAST
- Author(s):
- Lunsford, R.; Sun, Z.; Maingi, R.; Hu, J.S.; Mansfield, D.; Xu, W.; Zuo, G.Z.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Huang, M.; Meng, X.C.; Gong, X.Z.; Wan, B.N.; Li, J.G.
- Abstract:
- The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter > 600 microns are successful in triggering ELMs more than 95% of the time. It was also demonstrated that below 600 microns the triggering efficiency decreased roughly with granule size. Granules were radially injected from the outer midplane with velocities ~ 80 m/s into EAST upper single null discharges with an ITER like tungsten monoblock divertor. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. For those granules of sufficient size, ELM triggering was a prompt response to granule injection. By simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined.
- Type:
- Dataset
- Issue Date:
- December 2017