Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Large-eddy simulations were employed over five different sea ice patterns, with a constant ice fraction, to test if the overlying atmospheric boundary layer (ABL) dynamics and thermodynamics differs. The results of these simulations were used to determine that there were differences in vertical heat flux, momentum flux, and horizontal wind speed, and that more surface information is needed to predict the ABL over the sea ice surface. To see what other surface information is needed, twenty-two landscape metrics were calculated over forty-four different maps at differing resolutions, using the FRAGSTATs program. The results of that analysis are available in a .csv file in this dataset.
Large-eddy simulations were employed over half-ice and half-water surfaces, with varying surface temperatures, wind speeds, directions, as to test if the atmospheric interaction with the heterogeneous surface can be predicted via a heterogeneity Richardson number. This dataset was used to determine that surface heat fluxes over ice, water, and the aggregate surface seem to be captured reasonably well by the wind direction and the heterogeneity Richardson number, but the mean wind and turbulent kinetic energy (TKE) profiles were not, suggesting that not only the difference in stability between the two surface, but also the individual stabilities over each surface influence the dynamics.