Number of results to display per page
Search Results
332. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U
- Author(s):
- Lopez, N; Poli, F
- Abstract:
- Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modeling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here, we extend a previous optimization of O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97% of the absorbed EBW power
- Type:
- Dataset
- Issue Date:
- June 2018
333. Fast animal pose estimation using deep neural networks
- Author(s):
- Pereira, Talmo D.; Aldarondo, Diego E.; Willmore, Lindsay; Kislin, Mikhail; Wang, Samuel S.-H.; Murthy, Mala; Shaevitz, Joshua W.
- Abstract:
- Recent work quantifying postural dynamics has attempted to define the repertoire of behaviors performed by an animal. However, a major drawback to these techniques has been their reliance on dimensionality reduction of images which destroys information about which parts of the body are used in each behavior. To address this issue, we introduce a deep learning-based method for pose estimation, LEAP (LEAP Estimates Animal Pose). LEAP automatically predicts the positions of animal body parts using a deep convolutional neural network with as little as 10 frames of labeled data for training. This framework consists of a graphical interface for interactive labeling of body parts and software for training the network and fast prediction on new data (1 hr to train, 185 Hz predictions). We validate LEAP using videos of freely behaving fruit flies (Drosophila melanogaster) and track 32 distinct points on the body to fully describe the pose of the head, body, wings, and legs with an error rate of <3% of the animal's body length. We recapitulate a number of reported findings on insect gait dynamics and show LEAP's applicability as the first step in unsupervised behavioral classification. Finally, we extend the method to more challenging imaging situations (pairs of flies moving on a mesh-like background) and movies from freely moving mice (Mus musculus) where we track the full conformation of the head, body, and limbs.
- Type:
- Dataset
- Issue Date:
- 30 May 2018
334. Calibrationless rotating Lorentz-force flowmeters for low flow rate applications
- Author(s):
- Hvasta, M. G.; Dudt, D.; Fisher, A. E.; Kolemen, E.
- Abstract:
- A 'weighted magnetic bearing' has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under 'frictionless' conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. This paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.
- Type:
- Dataset
- Issue Date:
- 29 May 2018
335. Reductions in Retrieval Competition Predict the Benefit of Repeated Testing
- Author(s):
- Rafidi, Nicole S; Hulbert, Justin C; Brooks, Paula P; Norman, Kenneth A
- Abstract:
- Repeated testing (as opposed to repeated study) leads to improved long-term memory retention, but the mechanism underlying this improvement remains controversial. In this work, we test the hypothesis that retrieval practice benefits subsequent recall by reducing competition from related memories. This hypothesis implies that the degree of reduction in competition between retrieval practice attempts should predict subsequent memory for the practiced items. To test this prediction, we collected electroencephalography (EEG) data across two sessions. In the first session, participants practiced selectively retrieving exemplars from superordinate semantic categories (high competition), as well as retrieving the names of the superordinate categories from exemplars (low competition). In the second session, participants repeatedly studied and were then tested on Swahili-English vocabulary. One week after session two, participants were again tested on the vocabulary. We trained a within-subject classifier on the data from session one to distinguish high and low competition states. We then used this classifier to measure competition across multiple retrieval practice attempts in the second session. The degree to which competition decreased for a given vocabulary word predicted whether that item was subsequently remembered in the third session. These results are consistent with the hypothesis that repeated testing improves retention by reducing competition.
- Type:
- Dataset
- Issue Date:
- April 2018
336. Scenario Development During Commissioning Operations on the National Spherical Torus Experiment Upgrade
- Author(s):
- Battaglia, D.J.; Boyer, M.D.; Gerhardt, S.; Mueller, D.; Myers, C.E.; Guttenfelder, W.; Menard, J.E.; Sabbagh, S.A.; Scotti, F.; Bedoya, F.; Bell, R.E.; Berkery, J.W.; Diallo, A.; Ferraro, N.; Jaworski, M.A.; Kaye, S.M.; LeBlanc, B.P.; Ono, M.; Park, J.-K.; Podesta, M.; Raman, R.; Soukhanovskii, V.A.
- Abstract:
- The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal field (1 T) and plasma current (1.0 - 2.0 MA) in a low aspect ratio geometry (A = 1.6 - 1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes progress in the development of L- and H-mode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supported the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (B_T0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse > 1.8s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (beta_N/beta_N-nowall > 1) compared to NSTX discharges for Ip < 1 MA. High-performance H-mode scenarios require an L-H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (kappa > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.
- Type:
- Dataset
- Issue Date:
- April 2018
337. A Riccati Solution for the Ideal MHD Plasma Response with Applications to Real-time Stability Control
- Author(s):
- Glasser, A.; Kolemen, E.; Glasser, A.H.
- Abstract:
- To effectuate near real-time feedback control of ideal MHD instabilities in a tokamak geometry, a rapid solution for stability analysis is a prerequisite. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation (MRDE). Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ODEs often encountered in ideal MHD stability analyses-—for example, in tokamak edge and stellarator physics. We then demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON—enabling its parallel operation in near real-time. Output is shown to match with high accuracy, and with wall-clock time ≪ 1s. Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ > 1s-—as in ITER.
- Type:
- Dataset
- Issue Date:
- March 2018
338. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
- Author(s):
- Boyer, M.; Battaglia, D.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C.; Sabbagh, S.; Scotti, F.; Vail, P.
- Abstract:
- The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U Control System (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.
- Type:
- Dataset
- Issue Date:
- March 2018
339. Electron-density-sensitive Line Ratios of Fe XIII--XVI from Laboratory Sources Compared to CHIANTI
- Author(s):
- Weller, M.E.; Beiersdorfer, P.; Soukhanovskii, V.A.; Scotti, F.; LeBlanc, B.P.
- Abstract:
- We present electron-density-sensitive line ratios for Fe XIII–XVI measured in the spectral wavelength range of 200–440 Å and an electron density range of (1–4)×10^13 cm^−3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrument was relatively calibrated using spectroscopic techniques in order to improve accuracy. The line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.
- Type:
- Dataset
- Issue Date:
- February 2018
340. Collapse of reacted fracture surface decreases permeability and frictional strength
- Author(s):
- Peters, Catherine A.; Spokas, Kasparas
- Abstract:
- Geochemical and geomechanical perturbations of the subsurface caused by the injection of fluids present the risk of leakage and seismicity. This study investigated how flow of acidic fluids affects hydraulic and frictional properties of fractures using experiments with 3.8 cm-long specimens of Eagle Ford shale, a laminated shale with carbonate-rich strata. In low-pressure flow cells, one set of samples was exposed to an acidic brine and another set was exposed to a neutral brine. X-ray computed tomography and x-ray fluorescence analysis revealed that samples exposed to the acidic brine were calcite-depleted and had developed a porous altered layer, while the other set showed little evidence of alteration. After reaction, samples were compacted and sheared in a triaxial cell that supplied normal stress and differential pore pressure at prescribed sliding velocities, independently measuring friction and permeability. During the initial compaction, the porous altered layer collapsed into fine particles that filled the fracture aperture. This effectively impeded flow and sealed the fracture, resulting in a decrease in fracture permeability by 1 to 2 orders of magnitude relative to the compressed unaltered fractures. During shear, the collapsed layer of fine-grained particles prevented the formation of interlocking micro-asperities resulting in lower frictional strength. With regard to subsurface risks, this study showcases how coupled geochemical and geomechanical processes could favorably seal fractures to inhibit leakage, but also could increase the likelihood of induced seismicity. These findings have important implications for geological carbon sequestration, pressurized fluid energy storage, geothermal energy, and other subsurface technologies.
- Type:
- Dataset
- Issue Date:
- 2018